ID/\HO‘>

Division of Career

Technical Edunatiy_

2025 PROGRAMMING AND
SOFTWARE DEVELOPMENT

Program Standards

CONTENT STANDARD 1.0: PROFESSIONAL ORGANIZATIONS AND LEADERSHIP

Performance Standard 1.1: Student Leadership in Career Technical Student Organizations (CTSO)

and Professional Associations

1.1.1 Explore the role of professional organizations and/or associations in the Programming
and Software Development Industry.

1.1.2 Define the value, role, and opportunities provided through career technical student
organizations.

1.1.3 Engage in career exploration and leadership development.

Performance Standard 2.1: Essential Skills

2.1.1 Compare programming paradigms including procedural and object-oriented
programming.

2.1.2 Decompose complex problems into simpler, more manageable problems.

2.1.3 Plan structure and procedures before writing programs.

2.1.4 Write readable code following industry practices (e.g., white space, naming conventions,
comments).

2.1.5 Write syntactically correct statements.

2.1.6 Navigate a computer file system.

2.1.7 Reference documentation (e.g., language, library, framework) to use implementation
details.

2.1.8 Write software based on customer specifications.

Performance Standard 2.2: Project Development

2.2.1 Compare software development lifecycles (e.g., Agile, Waterfall).

2.2.2 Describe project scope and scope creep.

2.2.3 Initialize or clone a repository, using source control (e.g., git).

2.2.4 Commit and push code, using source control (e.g., git).

2.2.5 Pull code, using source control (e.g., git).

CONTENT STANDARD 3.0: DATA

Performance Standard 3.1: Variables and Data Types

3.1.1 Identify the scope of a given variable.

3.1.2 Identify the value of a variable at a given point.

3.1.3 Declare and instantiate variables.

3.1.4 Reassign a variable.

3.1.5 Write code that uses primitive data types (e.g., integer, floating points, boolean,
character).

3.1.6 Write code that uses reference types (e.g., string, object, array).

3.1.7 Write code that uses operators (e.g., +, -, *, /, %).

3.1.8 Cast data types.

3.1.9 Compare primitive types and derived/reference types.

3.1.10 Define constants and enumerations.

Performance Standard 3.2: Arrays

3.2.1 Declare an array and assign values to array elements.

3.2.2 Access data stored in array elements.

cte.idaho.gov 1

ID/\HO‘>

Division of Career

Technical Edunatiy_

3.2.3 lterate through all elements in an array.

3.2.4 Access data stored in array elements.

3.2.5 Create multidimensional arrays.

3.2.6 Sort elements in an array.

CONTENT STANDARD 4.0: CONTROL FLOW

Performance Standard 4.1: Branching and Logic

4.1.1 Execute decisions in a program, using “if,” “else-if,” and “else” statements.

4.1.2 Compare values with conditional operators (i.e., >, <, >=,<=, ==, |=),
4.1.3 Create compound conditional statements with logical operators (e.g., ! [NOT], && [AND],
| | [OR]).

4.1.4 Execute decisions in a program, using a nested IF statement.

4.1.5 Execute decisions in a program, using the switch statement.

Performance Standard 4.2: Loops

4.2.1 Create loops, using the while statement.

4.2.2 Create loops, using the for statement.

4.2.3 Write code that uses nested loops.

4.2.4 Write code that uses accumulators (e.g., running total, collection).

Performance Standard 4.3: Functions

4.3.1 Describe reasons for writing functions (e.g., to improve readability, reusability,
maintainability).

4.3.2 Write functions with no parameters and no return value.

4.3.3 Write functions that require one or more parameters.

4.3.4 Write functions that return a value.

4.3.5 Call functions.

4.3.6 Pass parameters to functions.

4.3.7 Write code that uses return values from functions.

4.3.8 Import libraries.

4.3.9 Write a recursive function.

Performance Standard 5.1 Input and Output

5.1.1 Write a program that produces intended output.

5.1.2 Provide appropriate prompts for user input.

5.1.3 Take input from a user.

5.1.4 Take input from a file.

5.1.5 Validate input.

5.1.6 Write to afile.

Performance Standard 5.2: Debugging

5.2.1 Debug programs by printing values to the console.

5.2.2 Inspect program state at runtime, using a debugger (e.g., breakpoints, stepping through
code).

5.2.3 Inspect variable values during runtime, using a debugger.

5.2.4 Identify the contents of the call stack.

5.2.5 Fix syntax and logic errors.

5.2.6 Testapplications, using varied input.

Performance Standard 5.3: Exception Handling

5.3.1 Catch exceptions.

5.3.2 Write code that uses the finally block.

5.3.3 Throw exceptions.

Performance Standard 6.1: Classes and Objects

6.1.1 Define abstraction.

cte.idaho.gov 2

o>

Technical Edunatiy,-

6.1.2 Describe object-oriented programming.

6.1.3 Create classes and instantiate objects from those classes.

6.1.4 Create properties.

6.1.5 Write constructors.

6.1.6 Describe public and private access (e.g., variables, methods).

6.1.7 Overload methods and constructors.

6.1.8 Reference the current object instance inside a class method (e.g., “this” in Java).

6.1.9 Demonstrate inheritance (“is a” relationships) by extending classes.

6.1.10 Demonstrate composition (“has a” relationships) by using a class object as a property in
another class.

6.1.11 Demonstrate polymorphism by overriding parent class methods.

6.1.12 Implement interfaces.

Performance Standard 6.2: Events

6.2.1 Define and apply event handling.

6.2.2 Handle control component events.

6.2.3 Handle mouse and keyboard events.

IDCTE Document Control Information

Program Standard Revision: ETE Programming & Software Development
Date Standard Original Summary of Change Revised Approved By

By

cte.idaho.gov 3

