
1.1.1 Explore the role of professional organizations and/or associations in the 
programming and software development industry. 1.21

1.1.2 Define the value, role, and opportunities provided through career technical 
student organizations. 1.11

1.1.3 Engage in career exploration and leadership development. 1.07

2.1.1 Compare programming paradigms including procedural and object-oriented 
programming. 2.50

2.1.2 Decompose complex problems into simpler, more manageable problems. 2.92
2.1.3 Plan structure and procedures before writing programs. 2.50
2.1.4 Write readable code following industry practices (e.g., white space, naming 

conventions, comments). 2.46
2.1.5 Write syntactically correct statements. 2.65
2.1.6 Navigate a computer file system. 2.88
2.1.7 Reference documentation (e.g., language, library, framework) to use 

implementation details. 2.69
2.1.8 Write software based on customer specifications. 2.50

2.2.1 Compare software development lifecycles (e.g., Agile, Waterfall). 1.54
2.2.2 Describe project scope and scope creep. 1.73
2.2.3 Initialize or clone a repository, using source control (e.g., git). 2.58
2.2.4 Commit and push code, using source control (e.g., git). 2.65
2.2.5 Pull code, using source control (e.g., git). 2.65

3.1.1 Identify the scope of a given variable. 2.68
3.1.2 Identify the value of a variable at a given point. 2.60
3.1.3 Declare and instantiate variables. 2.88
3.1.4 Reassign a variable. 2.84
3.1.5 Write code that uses primitive data types (e.g., integer, floating points, 

boolean, character). 2.84
3.1.6 Write code that uses reference types (e.g., string, object, array). 2.84
3.1.7 Write code that uses operators (e.g., +, -, *, /, %). 2.88

Programming and Software Development

CONTENT STANDARD 3.0: DATA
Performance Standard 3.1: Variables and Data Types

Performance Standard 2.2: Project Development

Criticality Survey 2025

CONTENT STANDARD 2.0: INDUSTRY PRACTICES
Performance Standard 2.1: Essential Skills

CONTENT STANDARD 1.0: PROFESSIONAL ORGANIZATIONS AND LEADERSHIP
Performance Standard 1.1: Effective Leadership and Participation in Career Technical Student 
Organizations (CTSO) and Professional Associations

cte.idaho.gov 1



3.1.8 Cast data types. 2.36
3.1.9 Compare primitive types and derived/reference types. 2.24
3.1.10 Define constants and enumerations. 2.40

3.2.1 Declare an array and assign values to array elements. 2.80
3.2.2 Access data stored in array elements. 2.76
3.2.3 Iterate through all elements in an array. 2.76
3.2.4 Search an array, using a loop. 2.68
3.2.5 Create multidimensional arrays. 2.08
3.2.6 Sort elements in an array. 2.20

4.1.1 Execute decisions in a program, using “if,” “else-if,” and “else” statements. 2.96
4.1.2 Compare values with conditional operators (i.e., >, <, >=,<=, ==, !=). 2.96
4.1.3 Create compound conditional statements with logical operators (e.g., ! [NOT], 

&& [AND], || [OR]). 2.83
4.1.4 Execute decisions in a program, using a nested IF statement. 2.58
4.1.5 Execute decisions in a program, using the switch statement. 2.04

4.2.1 Create loops, using the while statement. 2.70
4.2.2 Create loops, using the for statement. 2.87
4.2.3 Write code that uses nested loops. 2.26
4.2.4 Write code that uses accumulators (e.g., running total, collection). 2.35

4.3.1 Describe reasons for writing functions (e.g., to improve readability, reusability, 
maintainability). 2.61

4.3.2 Write functions with no parameters and no return value. 2.52
4.3.3 Write functions that require one or more parameters. 2.91
4.3.4 Write functions that return a value. 2.91
4.3.5 Call functions. 3.00
4.3.6 Pass parameters to functions 2.96
4.3.7 Write code that uses return values from functions. 2.91
4.3.8 Import libraries. 2.74
4.3.9 Write a recursive function. 2.00

5.1.1 Write a program that produces intended output. 2.87
5.1.2 Provide appropriate prompts for user input. 2.13
5.1.3 Take input from a user. 2.26
5.1.4 Take input from a file. 2.17
5.1.5 Validate input. 2.57
5.1.6 Write to a file. 2.04

CONTENT STANDARD 5.0: INPUT, DEBUGGING, AND EXCEPTIONS
Performance Standard 5.1: Input and Output

Performance Standard 5.2: Debugging

CONTENT STANDARD 4.0: CONTROL FLOW
Performance Standard 4.1: Branching and Logic

Performance Standard 4.2: Loops

Performance Standard 4.3: Functions

Performance Standard 3.2: Arrays

cte.idaho.gov 2



5.2.1 Debug programs by printing values to the console. 2.57
5.2.2 Inspect program state at runtime, using a debugger (e.g., breakpoints, 

stepping through code). 2.22
5.2.3 Inspect variable values during runtime, using a debugger. 2.17
5.2.4 Identify the contents of the call stack. 1.91
5.2.5 Fix syntax and logic errors. 2.87
5.2.6 Test applications, using varied input. 2.48

5.3.1 Catch exceptions. 2.26
5.3.2 Write code that uses the finally block. 1.87
5.3.3 Throw exceptions. 2.22

6.1.1 Define abstraction. 2.17
6.1.2 Describe object-oriented programming. 2.26
6.1.3 Create classes and instantiate objects from those classes. 2.48
6.1.4 Create properties. 2.48
6.1.5 Write constructors. 2.52
6.1.6 Describe public and private access (e.g., variables, methods). 2.43
6.1.7 Overload methods and constructors. 1.96
6.1.8 Reference the current object instance inside a class method (e.g., “this” in 

Java). 2.30
6.1.9 Demonstrate inheritance (“is a” relationships) by extending classes. 2.22
6.1.10 Demonstrate composition (“has a” relationships) by using a class object as a 

property in another class. 2.22
6.1.11 Demonstrate polymorphism by overriding parent class methods. 2.09
6.1.12 Implement interfaces. 2.17

6.2.1 Define and apply event handling. 2.26
6.2.2 Handle control component events. 2.00
6.2.3 Handle mouse and keyboard events. 1.83

Performance Standard 6.1: Classes and Objects

Performance Standard 6.2: Events

CONTENT STANDARD 6.0: OBJECT-ORIENTED PROGRAMMING

Performance Standard 5.3: Exception Handling 

cte.idaho.gov 3


	Sheet1

